Katharine L. Harrison and Arumugam Manthiram*

Electrochemical Energy Laboratory & Mechanical Engineering Program, The University of Texas at Austin, Austin, Texas 78712, United States

ABSTRACT: Vanadyl ion substituted LiFePO₄ cathodes of the form LiFe_{1-x}(VO)_xPO₄ for $0 \le x \le 0.25$ have been synthesized by a rapid microwave-solvothermal process at <300 °C within 10 min. Clear evidence of vanadyl ion substitution is demonstrated, despite a large size difference between Fe²⁺ and (VO)²⁺, by characterizing the products structurally, spectroscopically, and electrochemically. The vanadyl ion substitution is accompanied by the formation of iron vacancies in the lattice and Fe₃O₄ impurity phase, which increases with increasing (VO)²⁺ substitution for Fe²⁺ and could be removed with a magnetic stir bar. The formation of iron vacancies, along with the oxidation of some Fe²⁺ to Fe³⁺ to maintain charge neutrality, results in a decrease in the unit cell volume with increasing *x* despite the substitution of larger (VO)²⁺ for Fe²⁺. Charge–discharge data of the vanadyl ion substituted samples suggest suppression of the two-phase plateau behavior that is characteristic of LiFePO₄. Elec-

trochemical data collected without any carbon coating reveal that the capacity and rate capability decreases, but the capacity retention improves with $(VO)^{2+}$ substitution.

1. INTRODUCTION

Although lithium-ion batteries based on LiCoO2 cathodes are being widely used in portable electronics, safety and toxicity concerns have led to demand for new cathode materials, especially for use in the transportation sector. Cathodes based on polyanions such as $Fe_2(SO_4)_3$ and $Fe_2(MoO_4)_3$ were first pursued by Manthiram and Goodenough in the late 1980s.^{1,2} It was recognized that the covalently bonded polyanion groups lower the energy of redox couples through the inductive effect. This shifts the redox energy of couples like $Fe^{2+/3+}$ into a useful range. The covalently bonded polyanion groups also lead to higher thermal stability, which is a very important attribute for large battery packs. Several polyanion-based cathode materials have since then been developed, but of particular interest is the discovery of olivine LiFePO4 by Padhi et al.3 Since it was discovered in 1997, LiFePO4 has been widely studied in the literature and has also been commercialized.⁴⁻⁶

LiFePO₄ is a particularly promising cathode material for lithiumion batteries because iron is inexpensive, abundant, and environmentally benign. LiFePO₄ also has a high theoretical capacity of 170 mAh/g and a discharge plateau at 3.45 V vs Li/Li⁺. Because of poor electronic and ionic conductivities, however, the high capacity can only be realized after coating LiFePO₄ with carbon or other conductive materials and by reducing the effective diffusion length by synthesizing small particle sizes.^{7–17} Our group has recently demonstrated that LiFePO₄ can be synthesized at low temperatures (<300 °C) by a microwave-solvothermal (MW-ST) method. $^{13-17}$ This process results in single crystalline, uniform size LiFePO₄ nanorods and is advantageous for reducing energy consumption during synthesis as well as manufacturing cost.

Although LiFePO₄ is the most promising of the polyanion cathodes to date, there are several other candidate polyanion cathode materials, including LiVOPO₄, which have been studied to a much lesser extent than LiFePO₄. With a slightly lower theoretical capacity than LiFePO₄ (159 mAh/g) but with a higher voltage (3.7-4.0 V vs Li depending on the phase), LiVOPO₄ offers higher theoretical energy density than LiFePO₄. ¹⁸⁻²⁴ However, vanadium is toxic and more expensive than iron, so LiFePO₄ may always remain more desirable as a cathode material than LiVOPO₄. Regardless, we were interested in substituting the vanadyl (VO²⁺) ion for Fe²⁺ in LiFePO₄ for the purpose of increasing energy density and understanding the crystal chemistry.

LiVOPO₄ forms several different phases, but olivine LiVOPO₄ has not been successfully synthesized, which means that LiVO-PO₄ and LiFePO₄ do not have the same structure.^{18–20} However, LiFePO₄ and the β phase of LiVOPO₄ both belong to the space group *Pnma* and have three-dimensional structures consisting of channels for lithium removal and insertion during the charge and discharge process.^{5,6,18,21–23} Figure 1 compares the structures of LiFePO₄ and β -LiVOPO₄. Since the structures of

Received: December 27, 2010 Published: March 07, 2011 ARTICLE

Figure 1. Crystal structures of LiFePO₄ (left) and β -LiVOPO₄ (right).

LiFePO₄ and β -LiVOPO₄ are different and the vanadyl ion is larger than the iron ion, it may be difficult to form vanadyl substituted LiFePO₄ by conventional high-temperature synthesis processes. Interestingly, owing to the low synthesis temperatures involved, the microwave-assisted synthesis could lead to metastable phases that are not otherwise accessible. Accordingly, we have extended the MW-ST process to synthesize vanadyl substituted LiFePO₄ with the formula LiFe_{1-x}(VO)_xPO₄ for $0 \le x$ \leq 0.25 and x = 1. These samples were synthesized to study the crystal chemistry and to determine if the energy density of LiFePO₄ could be improved because of the redox behavior of the vanadyl ion, which is higher in potential than the iron ion. Furthermore, similar to LiFePO₄, the rate capability of LiVOPO₄ can be improved by decreasing the particle size.¹⁹ Thus, MW-ST synthesis could be a promising method to make LiVOPO₄ since the particle size in the MW-ST process can be tuned easily to create nanoparticles of different sizes.¹⁶

2. EXPERIMENTAL SECTION

2.1. Microwave Solvothermal Synthesis. $LiFe_{1-x}(VO)_xPO_4$ samples were synthesized by a rapid MW-ST method. Stoichiometric ratios of lithium hydroxide (Fisher), iron acetate (STREM), phosphoric acid (Fisher), and vanadium tri-isopropoxide oxide (VO(OC₃H₇)₃, Alfa Aesar) precursors were dissolved in tetraethylene glycol (Alfa Aesar) to obtain LiFe_{1-x}(VO)_xPO₄ with $0 \le x \le 0.25$ and x = 1. The resulting brown (for $0 \le x \le 0.25$) and red (for x = 1) solutions were transferred and sealed in high pressure quartz vessels. These vessels were secured on a rotor which was placed on a turntable in a microwave reaction system (Anton Paar Synthos 3000). The turntable was spun during synthesis to ensure uniform microwave heating, and stir bars were placed in each vessel to obtain uniform reactant mixing. The power was programmed to a constant level of 600 W. It took 20-30 min to ramp the temperature up to 260 °C, at which point the products formed. After reaching 260 °C, the constant power of 600 W was applied for 5-10 additional min, during which time the temperature remained between 260 and 280 °C. The temperatures of the vessels were monitored by infrared temperature sensors. The pressure was also monitored and was always kept below 30 bar throughout the synthesis. Because the particle size is dependent on the concentration of the precursors, the concentrations of lithium and phosphate ions were kept constant at 0.17 M. After synthesis, the microwave system went into convective cooling mode, and when the temperature was below 50 °C, the vessels were removed. A schematic of the synthesis process is depicted in Figure 2.

The magnetic stir bars in the vessels had varying amounts of a dark brown powder impurity stuck to them after syntheses of the LiFe₁₋ $_x(VO)_xPO_4$ samples. This impurity was removed by stirring the solution

Figure 2. Illustration of the microwave-solvothermal synthesis of $\text{LiFe}_{1-x}(\text{VO})_x \text{PO}_4$.

repeatedly with a magnetic rod until the rod came out of the solution clean. The amount of magnetic impurity increased with increasing *x* in $\text{LiFe}_{1-x}(\text{VO})_x\text{PO}_4$. The magnetic impurity was collected, dried, and analyzed by X-ray diffraction (XRD). It was identified as Fe₃O₄ (magnetite).

The Fe₃O₄ impurity was present despite careful analysis to ensure that the precursors were added to the solution in the intended ratios. Thermogravimetric analysis (TGA) and inductively coupled plasma (ICP) analysis were utilized to determine the water content of the iron acetate and lithium hydroxide precursors. The TGA and ICP results agreed with each other within 2%. The phosphoric acid precursor concentration was confirmed by ICP and acid—base titration, which also agreed within 2%. The vanadium tri-isopropoxide oxide concentration was also confirmed by ICP. Adjusting amounts of precursors based on the ICP and TGA data ensured that the correct concentrations were being added to the reactant solutions.

After removing the Fe₃O₄ impurity, the precipitates were washed with acetone and centrifuged several times until the decanted solution was clear. Then the products were dried overnight at 160 °C in a vacuum oven. The LiFePO₄ powder was light gray in color, and the LiFe₁₋ $_x$ (VO) $_x$ PO₄ compositions were gray with an increasingly brownish-pink tint with increasing (VO)²⁺ substitution. The LiVOPO₄ sample was reddish-brown in color.

2.2. Sol–Gel Synthesis of β -LiVOPO₄. The LiVOPO₄ prepared by the MW-ST method was found to be amorphous, so β -LiVOPO₄ was also synthesized by a sol–gel (SG) method²⁴ for use as a comparison in FTIR and X-ray photoelectron spectroscopy (XPS) experiments. The sol– gel synthesized LiVOPO₄ will hereafter be referred to as SG LiVOPO₄ so as to not be confused with microwave products. To prepare the SG LiVOPO₄, V₂O₅ (Alfa Aesar) and oxalic acid (Fisher) were dissolved in water in a 1:3 ratio and stirred at 70 °C until the solution turned blue. Lithium nitrate (Acros Organics) and ammonium dihydrogen phosphate (Acros Organics) were then added, and the resulting solution was stirred for 4 h. The solution was then dried in an air oven at 100 °C until a green powder was formed. The powder was heated in air at 300 °C for 4 h and then at 500 °C for 4 h. The relevant reactions are given below.²⁴

$$V_2O_5 + 3H_2C_2O_4 \rightarrow 2VOC_2O_4 + 3H_2O + CO_2$$
(1)

 $VOC_2O_4 + LiNO_3 + NH_4H_2PO_4 \rightarrow LiVOPO_4 + 2CO + 2NO + 3H_2O$ (2)

2.3. Structural, Physical, Chemical, and Spectroscopic Characterizations. XRD was performed on a Philips X-ray diffractometer

Figure 3. XRD patterns of (a) LiFePO₄, (b) LiFe_{0.95}(VO)_{0.05}PO₄, (c) LiFe_{0.85}(VO)_{0.15}PO₄, and (d) LiFe_{0.75}(VO)_{0.25}PO₄, and (e) a comparison of several LiFe_{1-x}(VO)_xPO₄ patterns over a smaller 2θ range.

with filtered Cu K α radiation, and scanning electron microscopy (SEM) images were obtained with a LEO 1530 SEM. Fourier Transform Infrared (FTIR) spectra were collected with a PerkinElmer BX FTIR spectrometer. Pellets for FTIR analysis were prepared by grinding and pressing samples with dried KBr powder. A Varian 715-ES ICP optical emission spectrometer was used for elemental analysis. XPS spectra were acquired by a Kratos AXIS Ultra DLD machine with monochromatic Al K α radiation. The pass energy was set to 20 eV, and automatic charge neutralization was used for all samples. Carbon spectra were collected for each sample, and the peaks were shifted such that the largest carbon peak was centered at 284.5 eV. Sputtering was done on the SG LiVOPO₄ sample at a beam energy of 4 keV for 50 s leading to an estimated 3 nm of material removal. Peak fitting was performed using CasaXPS software with Shirley type background removal and 30% Gaussian-70% Lorentzian curves.

2.4. Electrochemical Characterization. Cathodes were prepared by grinding 75 wt % active material with 12.5 wt % conductive carbon and 12.5 wt % teflonated acetylene black (TAB) in a mortar and pestle. TAB consists of polytetrafluoroethylene (PTFE) and acetylene black. The resulting composites were rolled into thin sheets and cut into 0.64 cm² area circles using a punch. The electrodes had approximately 7 mg of active material and were dried overnight in a vacuum oven at 115 °C before constructing cells. CR2032 coin cells were assembled in an argon filled glovebox using a metallic lithium anode, Celgard polypropylene separators, and 1 M LiPF₆ in 1:1 diethyl carbonate/ ethylene carbonate as the electrolyte.

The coin cells were cycled on an Arbin battery cycler within a range of 2.0-4.3 V for the LiFe_{1-x}(VO)_xPO₄ samples. SG LiVOPO₄ was cycled in the range of 2.0-4.3 V to be consistent with the rest of the study, but it was also cycled between 3.0 and 4.5 V since that is the typical range for LiVOPO₄. Open-circuit voltage curves were collected by charging the cells at a C/50 rate in small increments. After each increment, the cell was left at open circuit until the voltage was stable. Voltage stability generally was achieved after resting at open circuit for several days to weeks depending on the state of charge. Cyclic voltammetry data was obtained using a two electrode coin cell assembly on a Radiometer Analytical Voltalab PGZ402 Potentiostat with a step of 0.1 mV/s.

Table 1. Lattice Parameters of $\text{LiFe}_{1-x}(\text{VO})_x \text{PO}_4$ with $0 \le x \le 0.25$

compound	a (Å)	b (Å)	c (Å)	volume (Å ³)
<i>x</i> = 0.0	10.326(15)	5.98(2)	4.694(9)	289.85
<i>x</i> = 0.05	10.299(19)	5.965(14)	4.685(9)	287.82
x = 0.10	10.281(16)	5.962(12)	4.687(8)	287.29
x = 0.15	10.28(2)	5.944(16)	4.687(11)	286.40
x = 0.25	10.245(19)	5.932(10)	4.693(10)	285.21

Table 2. Elemental Ratios Obtained from ICP Analysis of $\text{LiFe}_{1-x}(\text{VO})_x \text{PO}_4$ ($0 \le x \le 0.25$)

compound	Fe/P	V/P	Li/P
LiFePO ₄	0.99		1.00
LiFe _{0.95} (VO) _{0.05} PO ₄	0.96	0.05	0.99
LiFe _{0.90} (VO) _{0.10} PO ₄	0.86	0.10	0.97
LiFe _{0.85} (VO) _{0.15} PO ₄	0.77	0.16	1.02
$\mathrm{LiFe}_{0.75}(\mathrm{VO})_{0.25}\mathrm{PO}_4$	0.70	0.24	0.99

3. RESULTS AND DISCUSSION

3.1. XRD and ICP Characterizations. XRD patterns for the $LiFe_{1-x}(VO)_xPO_4$ materials are shown in Figure 3a-d for $0 \le x$ \leq 0.25. The LiFe_{1-x}(VO)_xPO₄ patterns resemble the LiFePO₄ pattern very closely. Impurity peaks for Fe₃O₄ are not detectable, demonstrating that the impurity has been adequately removed by stirring with a magnetic bar, as discussed previously. Figure 3e compares the patterns for the $\text{LiFe}_{1-x}(\text{VO})_x \text{PO}_4$ samples over a smaller range of 2θ to demonstrate the clear shift to higher angles with increasing x in $\text{LiFe}_{1-x}(\text{VO})_x \text{PO}_4$ and to illustrate the lack of impurities. Table 1 gives the lattice parameter values of the samples. It is clear that there is a systematic decrease in unit cell volume with increasing $(VO)^{2+}$ substitution for Fe²⁺. Since the $(VO)^{2+}$ ion is larger than Fe²⁺, one would expect an opposite trend, that is, one would anticipate the unit cell volume to steadily increase with increasing $(VO)^{2+}$ substitution. This contradictory behavior can be explained by examining the ICP results given in Table 2 for the vanadyl ion substituted samples.

Table 2 clearly shows that the V/P ratios are nominally equal to the expected ratios for the intended samples. Similarly, the Li/P ratios are close to unity for all of the vanadyl ion substituted samples, as expected. However, substitution of more than 5 mol percent of $(VO)^{2+}$ for Fe²⁺ results in consistently lower Fe/P ratios than expected.

Stoichiometric amounts of precursors were mixed to form each of the samples according to the formula $\text{LiFe}_{1-x}(\text{VO})_x\text{PO}_4$. As discussed earlier, great care was taken to ensure that the precursors were added in the intended ratios. Despite this, as the value of *x* increased in $\text{LiFe}_{1-x}(\text{VO})_x\text{PO}_4$, increasing amounts of Fe₃O₄ impurity were formed, and they were removed from the synthesis products.

These observations suggest that the lattice can only incorporate a small amount of $(VO)^{2+}$ for Fe²⁺ before iron vacancies form. The excess iron in solution that cannot be incorporated into the lattice forms Fe₃O₄. Even when synthesizing pristine LiFePO₄, excess iron acetate leads to the formation of Fe₃O₄. This has been tested by synthesizing LiFePO₄ with 5%, 10%, and 15% excess iron acetate. ICP analysis confirms that the excess iron does not wash out of solution and remains in ratios proportional to the amount of extra iron precursor taken in the reaction

Figure 4. FTIR spectra of (a) LiFePO₄, (b) LiFe $_{0.95}$ (VO) $_{0.05}$ PO₄, (c) LiFe $_{0.90}$ (VO) $_{0.10}$ PO₄, (d) LiFe $_{0.85}$ (VO) $_{0.15}$ PO₄, (e) LiFe $_{0.75^{-1}}$ (VO) $_{0.25}$ PO₄, and (f) SG LiVOPO₄.

mixture. XRD confirms that the excess iron is in the form of Fe_3O_4 .

For the LiFe_{1-x}(VO)_xPO₄ samples, we believe that iron vacancies are formed, and the excess iron acetate in solution in turn forms Fe₃O₄. The iron vacancies explain why the unit cell volume decreases, rather than increases, with increasing x in LiFe_{1-x}(VO)_xPO₄. Even though (VO)²⁺ is larger than Fe²⁺, the unit cell volume decreases because iron vacancies, and the corresponding oxidation of some larger Fe²⁺ to smaller Fe³⁺ to compensate for the charge imbalance, cause the unit cell to contract. Furthermore, the formation of iron vacancies could help to accommodate the larger VO²⁺ ions in the lattice.

3.2. FTIR Characterization. Although it is unclear exactly how iron vacancies may be distributed and how the $(VO)^{2+}$ ions arrange themselves in the lattice, XRD data clearly suggest vanadyl ion substitution rather than a two-phase mixture or coating. Further evidence of vanadyl ion incorporation into the lattice is provided by the FTIR data shown in Figure 4. The FTIR spectra for LiFePO₄ and SG LiVOPO₄ are consistent with the spectra found in the literature.^{25–27} Because bands in the FTIR spectra arise primarily from bending and stretching modes of the PO₄^{3–} groups, the spectrum of SG LiVOPO₄ is not vastly different from that for LiFePO₄.

IR spectra of the LiFe_{1-x}(VO)_xPO₄ samples closely resemble the LiFePO₄ spectrum, but have several features which shift toward the SG LiVOPO₄ spectrum with increasing x. The asymmetric stretching modes of the P-O bond are between $v_2 = 468$ and $v_2 = 503$ cm⁻¹ for LiFePO₄ and are between $v_2 =$ 453 and $v_2 = 467 \text{ cm}^{-1}$ for SG LiVOPO₄. As x increases in $LiFe_{1-x}(VO)_xPO_4$, the $LiFePO_4$ doublet becomes less pronounced and the curves flatten in the v_2 region, as illustrated by the dotted line arrows in Figure 4. The flatter profile in this region shows more resemblance to the SG LiVOPO₄ spectrum. A similar pattern is seen for the asymmetric bending modes of the O–P—O bond, which are in the regions between $v_4 = 583$ and $v_4 = 652 \text{ cm}^{-1}$ for LiFePO₄ and between $v_4 = 619$ and $v_4 =$ 637 cm^{-1} for LiVOPO₄. In particular, obvious shifting is seen as the vanadyl ion is substituted for iron in the peak at $v_4 = 635$ cm⁻¹ for LiFePO₄. As x increases in LiFe_{1-x}(VO)_xPO₄, the peaks

move toward the peak for LiVOPO₄ at $\nu_4 = 637 \text{ cm}^{-1}$. This is indicated by the solid, colored lines in Figure 4, and a black line indicating the peak position for LiFePO₄ is shown on each plot for a comparison.

There is also a peak associated with the V=O bond in the SG LiVOPO₄ spectrum at $\nu = 909 \text{ cm}^{-1}$. The broad peak between $\nu_1 = 944$ and $\nu_1 = 962 \text{ cm}^{-1}$ for LiFePO₄ (which is a symmetric stretching vibration) extends to lower frequencies, and the plateau between 680 and 880 cm⁻¹ gradually shrinks as x increases in LiFe_{1-x}(VO)_xPO₄. The shrinking plateau, illustrated by the dotted line arrows in Figure 4, is due to the influence of the V=O bond in the samples and should be at around 909 cm⁻¹. Furthermore, LiFePO₄ has antisymmetric stretching modes of the P–O bond between $\nu_3 = 1078$ and $\nu_3 = 1134$ cm⁻¹, and LiVOPO₄ has comparable modes over a much wider range between $\nu_3 = 996$ and $\nu_3 = 1166$ cm⁻¹. Correspondingly, as x increases in LiFe_{1-x}(VO)_xPO₄, the ν_3 peaks occur over an increasingly larger range than for LiFePO₄. This is illustrated by the solid line arrows in Figure 4. These features are all consistent with vanadyl ion substitution for iron in LiFePO₄.

It should be noted that in attempting to synthesize LiFe₁₋ $_{x}(VO)_{x}PO_{4}$, it might also be possible for V^{5+} to substitute in the anion site for P^{5+} rather than the cation site, leading to VO_4^{3-3} ions. Because the FTIR spectra is so dominated by the polyanion group, we would expect to see large differences in the spectra if $LiFeP_{1-x}V_{x}O_{4}$ is formed, rather than only the small shifts evident in Figure 4. For example, the FTIR spectra of LiCoVO4 and LiNiVO₄ look very different from that of LiFePO₄.^{28,29} Therefore, the small shifts evident from Figure 4 are more consistent with cation substitution than with anion substitution. Also, attempts to mix precursors in stoichiometric ratios to form LiFeV_x $P_{1-x}O_4$ resulted in much higher amounts of Fe₃O₄ impurity, which further leads us to believe that $LiFe_{1-x}$ - $(VO)_x PO_4$ rather than LiFeV_xP_{1-x}O₄ is formed. Additionally, the substituted cation should be the vanadyl ion rather than a vanadium ion because the vanadium tri-isopropoxide oxide precursor used (structure shown in Figure 2) contains a very strong V=O, which is unlikely to be broken during the synthesis.

3.3. XPS Characterization. Although the oxidation state of vanadium in the vanadium tri-isopropoxide oxide precursor used in this study is 5+, tetraethylene glycol is capable of reducing V^{5+} to V^{4+} . This is verified by the XPS data shown in Figure 5. The vanadium peaks are shown in Figure 5a for MW-ST LiFe_{0.85}- $(VO)_{0.15}PO_4$ and SG LiVOPO₄. It is first necessary to analyze the peaks for SG LiVOPO4 to determine the expected peak locations for $V^{4+/5+}$ in the vanadyl ion. The $2p_{1/2}$ and $2p_{3/2}$ peaks for the SG LiVOPO₄ sample were not well fit with single peaks, so two peaks were used for each core line. The two peaks for the 2p_{3/2} electrons were at binding energies of 516.5 and 517.1 eV. To our knowledge, there is no XPS data for vanadium in β -LiVOPO₄, so the identification of the peaks can only be approximated by comparing to vanadium binding energies in other materials. The binding energies for V^{3+} , V^{4+} , and V^{5+} differ by only about 1.5 eV, and literature values vary significantly. This is compounded by the fact that some researchers shift their peaks so that the carbon 1s peak is at 284.5 eV, some shift carbon to 285.0 eV, and others shift the oxygen peaks to a certain value to standardize the measurements. Silversmit et al.³⁰ compared several vanadium oxidation states among various studies and included their standardization conditions. The average value among the studies they examined were 517.2 eV for V^{5+} in V_2O_5 and 516.0 for V^{4+} in VO_2 . The peaks at 516.5 and 517.1 eV

Figure 5. XPS data of $\text{LiFe}_{1-x}(\text{VO})_x\text{PO}_4$: (a) V 2p, (b) V 2p sputtered, (c) O 1s, (d) Fe 2p, (e) P 2p, and (f) C 1s. Large symbols indicate raw data, dots correspond to the various peak fits to the data, and solid lines correspond to the sum of the peak fits.

in the SG LiVOPO₄ sample agree reasonably with the average V⁴⁺ and V⁵⁺ values in Silversmit et al.³⁰ Titration of the SG LiVOPO₄ sample against potassium permanganate confirmed an oxidation state of 4.10 for the vanadium in the SG LiVOPO₄ sample, further suggesting a combination of V⁴⁺ and V⁵⁺ oxidation states. As shown in Figure 5b, sputtering the sample led to an increase in the amplitude of the peak for V⁴⁺ and a decrease in the peak for V⁵⁺. This suggests that the peak for V⁵⁺ is present because of surface oxidation of the vanadium.

The $2p_{1/2}$ and $2p_{3/2}$ peaks for LiFe_{0.85}(VO)_{0.15}PO₄ were easily fit to single peaks. The $2p_{3/2}$ peak was located at 516.5 eV. This agrees well with the location of the V⁴⁺ peak for the SG LiVOPO₄ sample and corroborates our claim that we have substituted (VO)²⁺ for Fe²⁺ rather than VO₄³⁻ for PO₄³⁻ because we have an oxidation state of V⁴⁺ rather than V⁵⁺ for LiFe_{0.85}(VO)_{0.15}PO₄. Furthermore, the V/P ratio on the surface of the LiFe_{0.85}(VO)_{0.15}PO₄ sample was found to be V/P = 0.16. This value agrees well with the intended V/P ratio and also agrees well with the bulk V/P ratio determined by the ICP analysis. This shows that the vanadium is not a surface coating; rather, the vanadyl ion substitutes uniformly for iron in the olivine lattice.

Examination of the oxygen peaks provides further evidence of vanadyl ion substitution into LiFePO₄. The oxygen data were all fit to two peaks, as shown in Figure 5c. The large oxygen peak for LiFePO₄ agrees well with literature values, and the smaller peaks

Table 3. XPS Binding Energies (eV) of $LiFe_{1-x}(VO)_xPO_4$

	V	V	0	Р	Р	Fe	Fe
compound	2p _{3/2}	2p _{1/2}	1s	2p _{3/2}	2p _{1/2}	2p _{3/2}	2p _{1/2}
LiFePO ₄			531.6	132.9	133.7	710.1	723.7
						713.6	727.5
LiFe _{0.85} (VO) _{0.15} PO ₄	516.5	523.8	531.0	132.9	133.6	709.8	723.4
						712.9	726.8
SG LiVOPO ₄	516.5	523.9	530.7	132.7	133.4		
	517.1	524.4					

in the oxygen spectra are generally attributed to surface contamination.^{31,32} The main peak for LiFe_{0.85}(VO)_{0.15}PO₄ is centered between the LiFePO₄ and LiVOPO₄ peaks, as summarized in Table 3. The shift in the oxygen peak relative to LiFePO₄ is likely due to the influence of oxygen in the vanadyl ion; the electrons from the oxide ions in LiFe_{0.85}(VO)_{0.15}PO₄ are ejected at slightly different energies than in pure LiFePO₄ because the chemical environment has been altered by the presence of (VO)²⁺. Shifts in the oxygen peaks for LiFe_{0.85}(VO)_{0.15}PO₄ from the LiFePO₄ peak locations toward the SG LiVOPO₄ peak locations are indicative of vanadyl ion substitution for iron in LiFePO₄.

The $2p_{1/2}$ and $2p_{3/2}$ iron peaks are shown in Figure 5d, each of which were fitted to two peaks. The iron peaks for LiFePO₄ at 710.1 and 723.7 eV agree well with the literature values for Fe²⁺, and the peaks at 713.6 and 727.5 eV agree well with the literature values for Fe³⁺.^{33,34} The presence of Fe³⁺ is likely due to surface oxidation. The peaks for LiFe_{0.85}(VO)_{0.15}PO₄ are at similar locations to those for LiFePO₄, but are shifted slightly to lower binding energies, likely because of the different chemical environment imposed by (VO)²⁺ substitution and vacancies in the Fe²⁺ site.

The phosphorus data for LiFePO₄, shown in Figure 5e, was fit to two peaks corresponding to the $2p_{1/2}$ and $2p_{3/2}$ core lines as is consistent with the literature,^{33,34} and the peaks for LiFe_{0.85}-(VO)_{0.15}PO₄ were found to be in the same locations as for LiFePO₄. The phosphorus peak locations for LiFePO₄ and LiVOPO₄ are in very similar locations, so it is as expected that the LiFe_{0.85}(VO)_{0.15}PO₄ peaks were not shifted from the LiFePO₄ peaks. Note that lithium data are not shown here because the Fe 3p electron binding energies overlap with the Li 1s electron binding energies, making the data difficult to interpret and less meaningful. The C 1s peaks are shown in Figure 5f to illustrate that the largest carbon peak in each sample was shifted to 284.5 eV, and the data for the other elements were shifted by the same amount.

3.4. SEM Characterization. The morphologies of LiFePO₄ and LiFe_{0.85}(VO)_{0.15}PO₄ were also characterized by SEM, as shown in Figure 6. LiFePO₄ forms uniform nanorod particles which have been analyzed by TEM in previous work, in which they were shown to be single crystals with an average size of about 40 nm by 100 nm.^{15,17} Conversely, LiFe_{0.85}(VO)_{0.15}PO₄ has several types of shapes including rods, plate-like particles, and spheres. The particle size is less uniform as well, but the particles are still at the nano scale.

3.5. Electrochemical Characterization. The vanadyl ion substituted samples were also characterized electrochemically by cyclic voltammetry (CV) to determine the activity of the iron and vanadium redox couples. The CV curves are shown in

Figure 6. SEM micrographs of LiFePO₄ (left) and LiFe $_{0.85}$ -(VO) $_{0.15}$ PO₄ (right).

Figure 7. CV data of (a) LiFePO₄, (b) LiFe_{0.95}(VO)_{0.05}PO₄, (c) LiFe_{0.90}(VO)_{0.10}PO₄, (d) LiFe_{0.85}(VO)_{0.15}PO₄, (e) LiFe_{0.75}-(VO)_{0.25}PO₄, and (f) SG LiVOPO₄ with the insets showing the regions between 2.0 and 2.6 V as well as 3.9 to 4.3 V.

Figure 7a-f and a summary of the charge and discharge peak locations are presented in Table 4. The second CV cycle is analyzed in detail because the CV peak locations stabilize after one cycle. LiFePO₄ has charge and discharge peaks centered around 3.45 V and the SG LiVOPO₄ sample has peaks centered around 4.0 V. The samples all have peaks centered around 3.45 V, which correspond to the activity of the $Fe^{2+/3+}$ couple. The vanadyl ion substituted samples also exhibit very broad peaks between 3.9 and 4.3 V that increase in size with increasing x in $LiFe_{1-x}(VO)_xPO_4$. These peaks are illustrated in more detail by the insets (all drawn to equal scale), which are located on the bottom, right corner of each CV plot. The peaks centered at 3.45 V in the vanadyl ion substituted samples are closer together in voltage and less broad than those in LiFePO₄, indicating less polarization. Increasing substitution of $(VO)^{2+}$ for Fe²⁺ leads to decreasing iron peak intensity for the peaks centered at 3.45 V and increasing current density in the region between 4.0 and 4.3 V. The latter current density can be attributed to the redox activity of the $V^{4+/5+}$ couple since LiVOPO₄ has a peak in the same region. Because of this activity in the region between 3.9

Table 4. CV Charge and Discharge Peak Voltages of $\text{LiFe}_{1-x}(\text{VO})_x \text{PO}_4$

compound	Fe ^{2+/3+} charge peak voltage (V)	Fe ^{2+/3+} discharge peak voltage (V)
LiFePO ₄	3.62	3.27
LiFe _{0.95} (VO) _{0.05} PO ₄	3.54	3.33
LiFe _{0.90} (VO) _{0.10} PO ₄	3.54	3.33
LiFe _{0.85} (VO) _{0.15} PO ₄	3.53	3.34
$LiFe_{0.75}(VO)_{0.25}PO_4$	3.52	3.36

and 4.3 V, we can conclude that the vanadyl ions in the vanadyl substituted samples are redox active. Also, the $\text{Fe}^{2+/3+}$ peaks for the vanadyl ion substituted samples systematically shift to higher discharge potentials and lower charge potentials with increasing *x* in LiFe_{1-*x*}(VO)_{*x*}PO₄, as summarized in Table 4.

The SG LiVOPO₄ curve also has small peaks close to 2 V. Because this is difficult to see from the scale in the plot, the region between 2.0 and 2.6 V has been expanded in insets shown on the top, left corner of each CV plot. SG LiVOPO₄ has been cycled between 2.0 and 4.3 V in this study to be consistent with the LiFePO₄ and the other samples tested, but typically LiVOPO₄ is cycled between 3.0 and 4.5 V. The activity seen near 2 V in SG LiVOPO₄ can be attributed to oxidation and reduction of the $V^{3+/4+}$ couple. LiVOPO₄ can accept a second Li⁺ ion to form Li_2VOPO_4 , which has activity near 2 V.³³⁻³⁵ It is clear that as x increases, the LiFe_{1-x}(VO)_xPO₄ samples also have a small amount of activity near 2 V. The separation between charge and discharge CV curves increases in size with increasing substitution of $(VO)^{2+}$ for Fe²⁺. Like the activity between 3.9 and 4.3 V, there are not sharp peaks between 2.0 and 2.5 V. However, this activity is still likely attributable to the activity of the $V^{3+/4+}$ couple since Li₂VOPO₄ also shows activity in this voltage range. It should be noted that the Fe₃O₄ impurity was removed with a magnetic stir bar before the electrochemical measurements. Also, even if any trace amount of Fe₃O₄ is present, it will not contribute to the electrochemical performance as the lithium insertion into Fe₃O₄ occurs below 2 V and our electrochemical tests were carried out above 2 V.

Further evidence of vanadium redox activity is evident from the first charge–discharge curves shown in Figure 8a–e with charge and discharge rates of C/10, C/2, and 2C for LiFe₁₋ $_x(VO)_xPO_4$. The SG LiVOPO₄ is also presented and was cycled at 2.0–4.3 V and 3.0–4.5 V, as shown in Figures 8f and 8g, respectively. The LiFe_{1-x}(VO)_xPO₄ curves generally exhibit behavior characteristic of LiFePO₄. The capacity is shown to decrease with increasing x in LiFe_{1-x}(VO)_xPO₄, which is partially due to the lower theoretical capacity of LiVOPO₄ and could be due to iron vacancies as well.

The charge curves exhibit a change in slope around 4 V. They flatten out at higher voltage, and this feature increases in extent with increasing *x* in LiFe_{1-*x*}(VO)_{*x*}PO₄. The capacity at 4 V is present because of the activity of the V^{4+/5+} couple. LiVOPO₄ clearly exhibits a plateau at 4 V, as shown in Figures 8e and 8f. It is also clear that the discharge curves for LiFe_{1-*x*}(VO)_{*x*}PO₄ have a change in slope at around 2.5 V and flatten out between 2.0 and 2.5 V. This can be attributed to the activity of the V^{3+/4+} couple by comparison to Figure 8f, the curve for SG LiVOPO₄.

As *x* increases, the LiFe_{1-*x*}(VO)_{*x*}PO₄ samples also show gradual suppression of the two-phase behavior that is typical for LiFe-PO₄. For LiFePO₄, shown in Figure 8a, the two-phase plateau

Figure 8. First charge-discharge curves of (a) LiFePO₄, (b) LiFe_{0.95}-(VO)_{0.05}PO₄, (c) LiFe_{0.90}(VO)_{0.10}PO₄, (d) LiFe_{0.85}(VO)_{0.15}PO₄, (e) LiFe_{0.75}(VO)_{0.25}PO₄, and (f) SG LiVOPO₄ cycled at 2.0-4.3 V (note change of capacity scale), and (g) SG LiVOPO₄ cycled at 3.0-4.5 V.

begins immediately upon discharge, so there is only a very small single-phase region for LiFePO₄. For LiFe_{0.75}(VO)_{0.25}PO₄, however, there is considerable single-phase behavior at the beginning of the discharge curve, and the two-phase region is decreased greatly.

The suppression of the two-phase behavior is best demonstrated through examination of the open-circuit voltage curve for LiFe_{0.75}(VO)_{0.25}PO₄, shown in Figure 9. LiFePO₄ is notorious for its very flat voltage curve at 3.45 V. In contrast, the LiFe_{0.75}(VO)_{0.25}PO₄ sample exhibits a continuously sloping open-circuit voltage curve. A sloping voltage versus capacity curve suggests a single-phase reaction mechanism, rather than a two-phase mechanism. The sloping voltage curve could be caused by the substitution of (VO)²⁺ for Fe²⁺ or it could be due to iron vacancies in the samples. A single sloping voltage curve for LiFePO₄ has been reported previously for a sample with small particle size and 10% iron vacancies, indicating that nonstoichiometry combined with small particles size may lead to single-phase behavior.³⁶

Single phase charging and discharging is of interest because it allows for greater coexistence of Fe^{2+} and Fe^{3+} species in the lattice without the presence of a phase boundary. This has rate implications since electronic conductivity in LiFePO₄ is achieved

Figure 9. Open-circuit voltage curve of $LiFe_{0.75}(VO)_{0.25}PO_4$.

Figure 10. Cycle life data of $\text{LiFe}_{1-x}(\text{VO})_x \text{PO}_4$ with $0 \le x \le 0.25$.

by small polaron hopping of Fe³⁺ holes or Fe²⁺ electrons. These charge carriers increase in concentration in a single-phase system.^{37,38} Also, although battery materials with flat voltage curves are beneficial because they can supply power at a constant voltage, sloping charge—discharge curves make state of charge determination easier for batteries.³⁶

Although the capacity and rate capability decrease with increasing $(VO)^{2+}$ substitution in LiFe_{1-x} $(VO)_xPO_4$, the capacity retention during extended cycling is better for all of the vanadyl ion substituted samples compared to LiFePO₄, as shown in Figure 10. It is possible that the improved cyclability could be due to the iron vacancies in the samples; the iron vacancies may suppress anti-site disorder between lithium and iron, and thereby enhance the lithium diffusivity. By 50 cycles, the capacities of all of the substituted samples except LiFe_{0.75}(VO)_{0.25}PO₄ are fairly stable and exceed the capacity of pristine LiFePO₄. Because of redox activity at higher voltage and the increased capacity, the energy densities of the vanadyl ion substituted samples are also higher than for LiFePO₄ after 50 cycles. It should be noted that all of the data presented here are for samples without any carbon coating, and MW-ST LiFePO4 with carbon coating has been shown before to exhibit very good capacity retention.¹⁵ Therefore, the trend in the cyclability results shown in Figure 10 may differ in the presence of carbon coating.

Finally, the LiFe_{1-x}(VO)_xPO₄ samples were made by a unique MW-ST process. The samples are difficult to make by conventional synthesis methods because LiFePO₄ generally requires heating in a reducing atmosphere to avoid the oxidation of Fe²⁺, but LiVOPO₄ synthesis generally requires heating in an oxidizing atmosphere. Initial results from heating these LiFe_{1-x}-(VO)_xPO₄ samples in reducing and oxidizing environments show that the vanadyl ion substituted samples are metastable and the phases are difficult to access by conventional methods, as will be discussed in future work.

CONCLUSIONS

We have synthesized vanadyl ion substituted LiFePO₄ samples of the form LiFe_{1-x}(VO)_xPO₄ with $0 \le x \le 0.25$ by a rapid microwave-solvothermal process at less than 300 °C within 10 min. The vanadyl ion substitution in the olivine lattice is evidenced by shifts in XRD and FTIR peaks. XPS data confirm that the oxidation state of vanadium is 4 + in LiFe_{1-x}(VO)_xPO₄, and ICP data suggest that iron vacancies are formed upon substituting more than 5% $(VO)^{2+}$ for Fe²⁺. CV and chargedischarge curves show that vanadium is electrochemically active, and the typical two-phase plateau behavior characteristic to LiFePO₄ is found to be suppressed in the vanadyl ion substituted samples. Although the capacity and rate capability decrease with increasing x in LiFe_{1-x}(VO)_xPO₄, the cycle life improves; however, the samples examined are not coated with carbon. As will be shown in future work, $\text{LiFe}_{1-x}(\text{VO})_x \text{PO}_4$ is thermally unstable, and is thus a metastable phase that may be difficult to synthesize by conventional methods.

AUTHOR INFORMATION

Corresponding Author

*E-mail: rmanth@mail.utexas.edu. Phone: 512-471-1791. Fax: 512-471-7681.

ACKNOWLEDGMENT

This work was supported by the Office of Vehicle Technologies of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. One of the authors (K.H.) thanks the National Science Foundation for the award of a Graduate Research Fellowship. The authors would also like to acknowledge the National Science Foundation for funding the Kratos Axis Ultra XPS used in this work under grant number 0618242 and thank Dr. A. Vadivel Murugan for his keen assistance at the initial stages of the microwave synthesis, Danielle Applestone for her assistance with XPS, and R. K. Harrison for his assistance with SEM analysis.

REFERENCES

(1) Manthiram, A.; Goodenough, J. B. J. Solid State Chem. 1987, 71, 349.

(2) Manthiram, A.; Goodenough, J. B. J. Power Sources 1989, 26, 403.
(3) Padhi, A. K.; Nanjundasawamy, K. S.; Goodenough, J. B. J. Electrochem. Soc. 1997, 144, 1188.

(4) Yamada, A.; Hosoyo, M.; Chung, S.-C.; Kudo, Y.; Hinokuma, K.; Liu, K.-Y.; Nishi, Y. J. Power Sources **2003**, 119, 232.

(5) Li, Z.; Zhang, D.; Yang, F. J. Mater. Sci. 2009, 44, 2435.

(6) Jugovic, D.; Uskokovic, D. J. Power Sources 2009, 190, 538.

(7) Gaberscek, M.; Dominko, R.; Jamnik, J. *Electrochem. Commun.* **2007**, *9*, 2778.

(8) Yamada, A.; Chung, S. C.; Hinokuma, K. J. Electrochem. Soc. 2001, 148, A224.

(9) Ellis, B.; Kan, W. H.; Makahnouk, W. R. M.; Nazar, L. F. J. Mater. Chem. 2007, 17, 3248.

(10) Wang, Y.; Wang, J.; Yang, J.; Nuli, Y. Adv. Funct. Mater. 2006, 16, 2135.

(11) Ravet, N.; Chouinard, Y.; Magnan, J. F.; Besner, S.; Gauthier, M.; Armand, M. J. *J. Power Sources* **2001**, *97*, 503.

- (12) Park, K.-S.; Schougaard, S. B.; Goodenough, J. B. Adv. Mater. 2007, 19, 848.
- (13) Murugan, A. V.; Muraliganth, T.; Manthiram, A. J. Electrochem. Soc. 2009, 152, A79.
- (14) Muraliganth, T.; Murugan, A. V.; Manthiram, A. J. Mater. Chem. 2008, 18, 5661.
- (15) Murugan, A. V.; Muraliganth, T.; Manthiram, A. J. Phys. Chem. C 2008, 112, 14665.

(16) Murugan, A. V.; Muraliganth, T.; Manthiram, A. Electrochem. Commun. 2008, 10, 903.

(17) Murugan, A. V.; Muraliganth, T.; Ferreira, P. J.; Manthiram, A. *Inorg. Chem.* **2009**, *48*, 946.

(18) Whittingham, M. S.; Song, Y.; Lutta, S.; Zavalij, P. Y.; Chernova,
 N. A. J. Mater. Chem. 2005, 15, 3362.

(19) Azmi, B. M.; Ishihara, T.; Nishiguchi, H.; Takita, Y. J. Power Sources 2003, 119, 273.

(20) Azmi, B. M.; Ishihara, T.; Nishiguchi, H.; Takita, Y. *Electrochim. Acta* **2002**, *48*, 165.

(21) Lii, K. H.; Li, C. H.; Cheng, C. Y.; Wang, S. L. J. Solid State Chem. 1991, 95, 352.

(22) Gaubicher, J.; Le Mercier, T.; Chabre, Y.; Angenault, J.; Quarton, M. J. Electrochem. Soc. **1999**, *146*, 4375.

(23) Barker, J.; Saidi, M. Y.; Swoyer, J. L. J. Electrochem. Soc. 2004, 151, A796.

(24) Ren, M. M.; Zhou, Z.; Su, L. W.; Gao, X. P. J. Power Sources 2009, 189, 786.

(25) Salah, A. A.; Jozwiak, P.; Zaghib, K.; Garbarczyk, J.; Gendron, F.; Mauger, A.; Julien, C. M. Spectrochim. Acta, Part A 2006, 65, 1007.

(26) Lemos, V.; Guerini, S.; Filho, J. M.; Lala, S. M.; Montoro, L. A.; Rosolen, J. M. Solid State Ionics **2006**, 177, 1021.

(27) Baran, E. J.; Vassallo, M. B. J. Raman Spectrosc. 1994, 25, 203.

(28) Bhuvaneswari, M. S.; Selvasekarapandian, S.; Kamishima, O.; Kawamura, J.; Hattori, T. J. Power Sources **2005**, 139, 279.

(29) Fey, G. T.-K.; Cho, Y.-D.; Muralidharan, P. Pure. Appl. Chem. 2008, 80, 2521.

(30) Silcersmit, G.; Depla, D.; Poelman, H.; Marin, G. B.; De Gryse, R. J. Electron Spectrosc. Relat. Phenom. **2004**, 135, 167.

(31) Dedryvere, R.; Maccario, M.; Croguennec, L.; Le Cras, F.; Delmas, C.; Gonbeau, D. Chem. Mater. 2008, 20, 7164.

(32) Sarvanan, K.; Reddy, M. V.; Balaya, P.; Gong, H.; Chowdari, B. V. R.; Vittal, J. J. *Mater. Chem.* **2009**, *19*, 605.

(33) Whittingham, M. S.; Song, Y.; Lutta, S.; Zavalij, P. Y.; Chernova, N. A. J. Mater. Chem. 2005, 15, 3362.

(34) Ren, M. M.; Zhou, Z.; Gao, X. P. J. Appl. Electrochem. 2010, 40, 209.

(35) Song, Y.; Zavalij, P. Y.; Whittingham, M. S. J. Electrochem. Soc. 2005, 152, A721.

(36) Gibot, P.; Casas-Cabanas, M.; Laffont, L.; Levasseur, S.; Carlack, P.; Hamelet, S.; Tarascon, J.-M.; Masquelier, C. *Nat. Mater.* **2008**, 7, 741.

(37) Ellis, B.; Herle, P. S.; Rho, Y.-H.; Nazar, L. F.; Dunlap, R.; Perry, L. K.; Ryan, D. H. *Faraday Discuss.* **2007**, *134*, 119.

(38) Ellis, B.; Perry, L. K.; Ryan, D. H.; Nazar, L. F. J. Am. Chem. Soc. **2006**, 128, 11416.